

- Is a protein with catalytic properties due to its power of specific activation
- Not all biological molecules capable of catalytic activity are proteins – RNA molecules
- Enzymes of current and foreseeable use in food industry are proteins hence definition above will remain in use

- Enzyme remains unaltered at the end of the reaction
- Does not mean the enzyme plays an inert role. Any alterations are reversible – intermediate complexes
- Enzymes are not used up in the reaction but can be used over and over again – turnover number

- Many enzyme reactions do not proceed under general environmental conditions
- There is always need to be energized to reach the intermediate stage – "energy of activation" –heating
- Enzymes are very specific in their reactions (lock and key) Fischer model of stereo specific link between enzyme and substrate

- Specificity may be demonstrated in structurally similar compounds – glucose oxidase – D-glucose into D- gluconate. 2 deoxy – D- glucose 25% while 6-methyl D-glucose -2%
- Some other are more specific for bonds occurring in similar molecules α amylase for α linkages between adjacent glucose units in starch. Cellulase for β linkages in glucose in cellulose

FOUNDAMENTALS OF ENZYME ACTIVITY

 Enzymes important in food are mainly hydrolases

ENZYME KINETICS

- Enzyme reactions are directly proportional to enzyme concentration
- Not always the case inhibitors (heavy metal ions) or dissociable activator, the curve is not linear but curved upward

ENZYME KINETICS

- Downward curve saturation at higher rates, inhibitors or essential co- factors
- Over time, the relationship is not linear and a decline sets in. Time for decline varies with enzymes from few minutes to hours
- Beneficial if the enzyme presence in the product is undesirable
- Explanation is substrate depletion

ENZYME KINETICS

 Other reasons are – inhibition by product, enzyme inhibition by instability in enzyme

Substrate concentration

- Obviously dependent on substrate concentration. The velocity is not linear
- Reason is enzyme forms a one to one stoichiometric complex with substrate. Its only this complex can be broken down. Increase in substrate concentration saturates the enzyme

ENZYME KINETICS

- Environmental conditions temperature, pH, ionic strength and moisture
- Rate of reactions increases with increase in temperature
- Heat used to denature endogenous deleterious enzymes – blanching
- Bell shaped higher temperatures denature the enzymes
- Low freezing temperatures lipases
- Enzymes capable of renaturing after heating

- Enzymes play a vital role in food industry
- Cheese and brewing rely on enzyme activity in various stages of processing
- Trial and error been able to optimize conditions –malting, resting animals prior to slaughter
- Traditional products like yoghurt depend on enzymes –but whole organisms

- Whole organisms give characteristic notes in the product that can not be achieved by purified enzymes
- Enzymes used may be endogenous like in amylase in mashing, or in yoghurt

Accessibility of substrate by enzymes

 Some enzymes found free in cytoplasm but many are bound to membrane and almost in contact with substrate

- If exogenous enzymes are to be used = cross the membrane barrier. Intact membranes are impermeable to large molecules like exogenous enzymes
- Tenderization of meat not able to effect CT unless during cooking, penetration – dips, injections prior to slaughter

Reaction conditions

- Enzyme reactions occur not under ideal conditions (temperature, substrate, pH).
 It is difficult to predict the amount of enzyme required
- Substrate concentration is another problem of applying biochemical criteriacommercial enzymes operate at 50-100°C as opposed to 25°C

 Physical factors affect enzyme action, Cf reaction rates in solution and those that are bound to membranes

Sources of enzymes

 Most organisms have certain core enzymes – Embden Meyerhof pathway, amylase in human saliva and seeds potential source

- Others are specific- nitrogen fixing, allilinase in onions – precursor for peptide breaking – release sulphur containing volatiles –aroma – limited source
- Animals have produced some enzymes for food and medical purposes – rennin stomach of pre- weaned calves. Problem wasteful and emotive. Alternative is microbial derived.

- Animal and plant sources impracticable
 Legal and safety implications
- Legal status depends on applicationenzymes left in product which are not found in food proper regulated as additives
- Consumers view of food and risk. Air ticket, food in airport café.

- Cause allergies if in powder –solutions
- Injurious to health in stomach- attacking body tissue
- Microbial and fungal –toxins (consumer view)

Use of enzymes in meat

- Found their use in tenderization of meat
- Dates back in 500yrs ago when Mexican Indians wrapped meat in papaya leaves during cooking

- Enzyme causing tenderization –papain cysteine proteases (ficin and bromelain)
- Introduction of these exogenous enzymes
- Use of bacterial collagenases during cooking
- Endogenous enzymes (Cathepsin Band D and CAF)
- Mechanically Recovered meat -15-40% of bone weight –used in soups and gravies (bacterial Alcalase and neutrase) or animal feeds